采用创新的采购解决方案,改变采购和合同

创新的采购合同 Adobe的股票

采购本身就是一个繁琐、耗时和繁琐的过程。因此,大多数公司并没有有效地管理他们的开支。

影响支出和采购管理的一个重要但却被忽视的方面是采购类别。

采购类别在支出管理中的无形作用和影响

采购类别是一组需求和供应驱动因素和来源重叠的类似商品和服务。例如,“建设中的采购”是一个广义的术语。它可以进一步细分为各种采购类别,如混凝土、砖石、木材、钢铁、电气、消防系统和油漆类型。对每个采购类别进行战略管理可以改善整体采购和采购流程,并优化整体支出管理。

然而,在实际世界中,当处理不同的采购类别时,真正的挑战出现了,因为它们根据组织的规模和类型以及供应市场的不同而不同。成本,质量,费用模式和交付模式不同,当你处理不同的供应商为每个不同的类别。

想象一下在跨业务单元执行每个类别的rfp时所浪费的时间和精力。

因此,传统的采购方法常常导致多个供应商向同一公司交付相同的组件,因为每个合同都是针对一个特定的业务单元进行谈判的。

不幸的是,对于企业来说,跨部门报告同一产品的多个协议并不罕见。

在这里,与其为不同的项目接触不同的供应商,不如确定您的组织在所有类别项目和这些类别中的特定项目上花费多少。

通过品类管理,采购谈判一个单一的合同,涵盖所有业务单位的需求。这给了公司更多的有利价格杠杆。一个品类的总购买量也吸引了顶级供应商,这些供应商在质量和按时交货方面享有更好的声誉。这种方法可以产生显著的折扣和更大的采购效率。

针对不同采购类别执行rfp的挑战

  • 缓慢的RFP-to-award周期时间:手动过程可能会使比较和评估RFP响应花费很长时间。
  • RFP协作不佳:当依赖电子邮件和电子表格组织整个过程时,很难协调好几个部门的利益。
  • 缺乏RFP可见性和数据:不了解供应商的响应状态会影响比较投标、验证供应商符合性要求和招聘新供应商的过程。没有数字工具提供的数据,分析驱动增长的可见性和潜力都是有限的。
  • 合同管理不善:合同存在于各个部门,很难与所有相关方协调。通过合同生命周期管理(CLM)自动化,法律部门应该能够控制遵从性,但是为所有部门提供一种自行构建遵从性合同的方法。
  • 合同不可见性:像电子邮件和电子表格这样的手工过程使跟踪合同变得困难。因此,当你有数千份合同时,没有一个人或一个团体可以管理它们。数字存储库有助于组织合同,并让所有涉众随时检查状态和访问合同条款。
  • 表现不佳的合同价值:数字文件可以链接到其他数字流程在业务期限,合同中提到的财务条款和其他里程碑可以满足——所有这些保证实现预期的交易价值被公司和供应商同意。CLM自动化还有助于收集数据,为业务分析提供动力。

用智能工具消除RFX过程挑战——希望还是炒作?

为了避免紧张的供应商关系,增加RFX到合同的周转时间,并修复不协调的流程和竖井,涉众和其他团队成员可以从成熟、智能的RFX和合同工具中获得帮助。这些工具有助于克服固有的过程挑战。

使用智能RFX工具,您可以创建RFP模板并邀请供应商提交建议。从一个集中的rfp数据库中,你可以选出供应商名单,评估他们的回应,并授予他们合同——所有这些只需点击几下。

需求为王,但除非类别经理有先进的工具将需求转化为精简的采购和承包过程,否则类别管理策略将会失败。

基于ai的源到合同解决方案可以帮助组织在整个采购过程中更有效地进行采购,并帮助实现效率和支出管理目标,就像品类经理帮助实现采购的大局一样。

在S2C解决方案中使用AI作为强大的RFX工具,不仅可以提高RFX流程的效率,还可以帮助分析投标和评估供应商风险。同样,包含在S2C解决方案中的基于ai的合同管理可以帮助提取元数据和条款,帮助导入第三方文件和遗留协议,并无缝地将投标响应与合同流程连接起来。

通过链接子过程领域,如花费分析与采购和采购到支付,在一个领域中创建的可见性、协作和价值会在剩余的连接的子过程中得到发扬和放大。连接这些过程的组织更早地认识到价值,因为供应商管理、遵守和过程效率的整体实现。

数字化解决采购和承包方面的挑战

为了深入了解如何应对这些挑战,我们采访了Sunil Masand,高级副总裁兼产品主管Aavenir是一家在ServiceNow平台上为云提供原生源支付解决方案的提供商。

beplay网页下载开支问题:这类技术被称为合同来源。一个强大的合同模块和一个现代的RFX模块如何能改变采购专业人员及其客户(如其内部利益相关者和外部供应商)的期望?

苏尼尔Masand:无论是从来源到合同,从来源到付款,还是从采购到付款,都是从RFX开始的。强大和智能的RFX管理软件不仅简化了流程,还将机会转化为储蓄。大多数人关注与外部各方的有效合作。然而,RFP软件帮助实现内部和外部的无缝协作。通过支持ai的自动化工作流和分析仪表板,它可以加快RFX周期时间,并比以往更快地完成合同。

人工智能帮助采购人员进行“引导购买”决策。对于RFX流程和合同生命周期,这种类型的反馈是如何提供的?

我想说的是,不仅“买家”,而且整个采购专业人员都可以从人工智能支持的RFX技术中获益良多。支出分类、供应商匹配、捕获供应商主数据、检测异常——所有这些都有助于采购专业人员做出有指导的购买决策。它有助于做出符合公司思维的决定。例如,如果你的合同包括net-30付款条款,Aavenir的Contractflow解决方案会指出,该供应商的大多数合同都是net-60付款条款。像这样的偏差为所有各方节省了很多麻烦。

最好的例子是我们引以为豪的客户之一,约翰霍普金斯大学。有了AI和基于规则的定制工作流,我们可以帮助他们集中采购请求、供应商入职和整个合同生命周期。通过集中采购和合同管理,他们的合同周转速度提高了80%。

因此,简而言之,人工智能帮助人们做出指导性的购买决定,并帮助人们避免做出不明智和过早的决定。

这些不明智决定的例子有哪些?

在这个过程的每个阶段,可能会有很多问题——比如不使用你之前加入的供应商,接受不完整的或非标准化的报价,忽视供应商的业绩历史,对现有供应商表现出偏见,最终进行暗中采购,等等。

不管出于什么原因,在购买方面的偏见倾向于支持现有的供应商。也许上层管理偏爱那个供应商,或者更有可能的是,采购陷入陈规,向一个主要供应商下订单,因为它没有对所有采购活动的全景图。对在职者的偏见也适用于RFP过程。你需要有一种方法来基于数据做出决定,并减少选择供应商时的偏见。Aavenir的RFPflow解决方案帮助那些来源评估集中在数据上。

在合同管理中,结构和经验是关键。例如,如果您有一个新的SLA,并且正在协商条款,那么有一个适合您正在协商的合同类型的模板将会很有帮助。你的语言必须是具体和可衡量的。我们的Contractflow解决方案具有子句库,可以帮助您在查看供应商评估和合同时选择正确的语言。

这个品牌工作室的帖子是用Aavenir

在Procurious分享

讨论:

您的电子邮件地址将不会被公布。必需字段被标记

这个网站使用Akismet来减少垃圾邮件。了解评论数据是如何处理的

Baidu